

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 250-252 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0211250252 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 250

RDBMS indexing using B+ trees

Karan Bali, Dr. Sunil Maggu
Student, Department of IT, MAIT (Rohini), affiliated to GGSIPU

(Mentor)

Date of Submission: 05-12-2020 Date of Acceptance: 20-12-2020

--

ABSTRACT: This is a research-based project and

the point motivating this project is learning and

implementing algorithms that reduces time and

space complexity.In the project, we reduce the time

taken to search a given record by using a B/B+ tree

rather than indexing and traditional sequential

access. It is concluded that disk-access times are

much slower than main memory access times.

Typical seek times and rotational delays are of the

order of 5 to 6 milliseconds and typical data

transfer rates are of the range of 5 to 10 million

bytes per second and therefore, main memory

access times are likely to be at least 4 or 5 orders of

magnitude faster than disk access on any given

system. Therefore, the objective is to minimize the

number of disk accesses and thus, this project is

concerned with techniques for achieving that

objective i.e. techniques for arranging the data on a

disk so that any required piece of data, say some

specific record, can be located in a few I/O’s as

possible.

I. INTRODUCTION
B/B+ trees are extensively used in

Database Management Systems because search

operation is much faster in them compared to

indexing and traditional sequential access.

Moreover, in DBMS, B+ tree is used more as

compared to B-Tree. This is primarily because

unlike B-trees, B+ trees have a very high fan out,

which reduces the number of I/O operations

required to find an element in the tree. This makes

the insertion, deletion, and search using B+ trees

very efficient. However, the indexing of column to

be searched is also efficient but the downside of it

is that when searching is to be done on large

collections of data records, it becomes quite

expensive, because each entry in B/B+tree requires

us to start from the root and go down to the

appropriate leaf page. This operation takes only

O(log n) time. Hence we would also like to

implement the efficient alternative, B+ tree

B-Tree is a self-balancing search tree. In

most of the other self-balancing search trees, it is

assumed that everything is in main memory. To

understand the use of B- Trees, we must think of

the huge amount of data that cannot fit in main

memory. When the number of keys is high, the data

is read from disk in the form of blocks. Disk access

time is very high compared to the main memory

access time. The main idea of using B-Trees is to

reduce the number of disk accesses. Most of the

tree operations (search, insert, delete, max, min,

..etc) require O(h) disk accesses where his the

height of the tree. B-tree is a fat tree. Height of B-

Trees is kept low by putting maximum possible

keys in a B-Tree node. Generally, the B-Tree node

size is kept equal to the disk block size. Since it is

low for B-Tree, total disk accesses for most of the

operations are reduced significantly compared to

balanced Binary Search Trees like AVL Tree, Red-

Black Tree, ..etc.

II. METHODOLOGY
In this project I made a software which

will make searching in RDBMS optimized . It will

also show better performance of index seek method

for searching over table scan method.

The project can be used to create references using

any of the data information

.It can be on the basis of ID, name ,

username OR password. Storing the references in

the form of a b tree helps optimize the search

operation to a great extent. Once we want to create

the indices on the basis of the name , we generate

indices and create another file that stores indices .

In order to create the indexes the names were

sorted and then divided in groups of 2000. Then

these were divided and segregated in the form of B

tree which decided the number of levels the B tree

will have. I am creating random data in tables /

columns. Like in any database this is stored in the

form of extents and pages. Create_data() function

is used to create random data in Java by specifying

the number of rows of data we need.

Get_random_word function was used for this

purpose. This was the function that used the inbuilt

Math.random() function which is inbuilt in Java.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 250-252 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0211250252 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 251

Then the ASCII value was used to create random

names from randomly created numbers from the

above function.

Considering normal storage of data in the

backend the data is stored in extends. Each extend

is made up of 64kb of data

.One extend is divided in 8 pages.

The data is generated in the form of ID / name /

username / password.

Now to access any particular piece of data we have

to access using the table scan method which is

somewhat equivalent to linear search.

Now in order to reduce the time we create indexing

and store them in the form of a b tree. Normally in

a binary tree a node contains one data entry only

but here as we are using a b tree we can enter

multiple data references.

In order to reduce the page scan I have created

indexes. This helps us create nodes in the form of a

tree which makes searching easier. Let there be 8 x

10^9 kB data. The number of pages formed are

10^9 as each page contains 8 KB of data. So when

we have to search normally in tables scan method ,

let on a 10^6 th page it takes a considerable amount

of time.

Here , let if we were making indexes on

the basis of ID 1 ID is 4 bits, one page can have

8kb data so one index page has 2000 ids. This

means reference of 2000 rows can be stored in one

page.

Thus starting from the root node let even

if we have 8x10^9 data entries we will be able to

cover them within 3 Page scans as we are covering

only 3 B tree nodes starting from the root to the

leaf node.

Normal SQL queries are used to search for

a name. The leaf node of the B tree contains the

references of the data page. On the data page is the

actual data present. No inbuilt or self made trees

were used in the project. Rather only the data was

stored in the form of a b tree which gave the

illusion of access of data like that in a b tree.

III. RESULT
The final output of the project begins with a start

page having 4 panels at the top. The panels

represent the home,data,indices and query page.

Once in the data page, the project asks us the

number of rows of data that needs to be created.We

enter 10000 rows. Once this is done we get data

pages created of random data entries in a separate

folder that represents a total of 10000 rows.

Then the indices page asks the parameter on which

the indices need to be created. Once we enter

NAME as the parameter. Further another index

folder is created that holds the indices stored of the

given data pages.

The indices, store the references as range of data in

one index. Hence we need to scan only that

particular range for the given name search.

Once this is done, search query is generated from

the Query page. Here we pick a random name that

we need to search for from the data page. Enter the

name in the search query.

Here for the test case taken name in the system is

“gezoqnkm”.

When considering normal tables scan method, the

number of pages read in order to search for a name

are 42. This includes a total of 6 extents. And

scanning on the third page of 6th extent. The total

time taken was 17 millisecond.

Once the indexes are created finally searching for

the same name but using the index seek method we

are able to do the same in 2 millisecond and then

number of pages read are only two these involve

starting the root then the leaf and finally reaching

the data page.

Here whatever we did ,we did with the help of

nonclustered indexing. We did not edit anything in

the original data rather we created indexes for

faster access.

IV. CONCLUSION
It is concluded that disk-access times are

much slower than main memory access times.

Typical seek times and rotational delays are of the

order of 5 to 6 milliseconds and typical data

transfer rates are of the range of 5 to 10 million

bytes per second and therefore, main memory

access times are likely to be at least 4 or 5 orders of

magnitude faster than disk access on any given

system. Therefore, the objective is to minimize the

number of disk accesses and thus, this project is

concerned with techniques for achieving that

objective i.e. techniques for arranging the data on a

disk so that any required piece of data, say some

specific record, can be located in a few I/O’s as

possible

1. From the above observations, it is very clear

that B+tree is better than normal indexing in

every possible way.

2. Hence it is always desirable to implement B+

tree data structure to search data in an efficient

manner.

3. Multilevel Indexing is Better for larger data

whereas sparse indexing does well with

smaller data

V. FUTURE SCOPE OF WORK:
1. Bull loading algorithm can be implemented to

improve upon insertion in B/B+ tree which is

O(log n). The conventional method is to

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 11, pp: 250-252 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0211250252 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 252

implement using a top-down fashion from the

root node to leaf node.

2. Bulk loading can also be implemented using a

bottom-up fashion from the leaf node to the

root accessing only one level at a time.

3. One could then compare the statistics and

decide which way would be better for bulk

loading.

4. The great commercial success of database

systems is partly due to the development of

sophisticated query optimization technology.

These techniques can be further applied to all

the applications of Dynamic Programming.

REFERENCES

[1]. Data Structures and Algorithms in Java,

Michael T.Goodrich, RobertoTamassia,

Michael H. Goldwasser

[2]. Data Structures using C, Aaron M.

Tenembaum, Yedidyah Langsam, Moshe J.

Augenstein

[3]. https://medium.com/@info.gildacade

my/time-and-space-complexity-of- data-

structureand-sorting- algorithms-

588a57edf495

[4]. https://en.wikipedia.org/wiki/B%2B_t ree

[5]. Database System Concepts taught in class

and text reference textbook by Abraham

Silberschatz, Henry F. Korth, and S.

Sudarshan

[6]. https://www.javatpoint.com/b-plus- tree

[7]. https://en.wikipedia.org/wiki/Self-

balancing_binary_search_tree

[8]. https://en.wikipedia.org/wiki/AVL_tre e

[9]. https://en.wikipedia.org/wiki/Red%E

2%80%93black_tree

[10]. Arbel-Raviv, M., Morrison, A., Trevor, B.:

Getting to the root of concurrent binary

search tree performance. In: ATC, Boston,

MA, USA (2018)

[11]. R. A. Hankins and J. M. Patel. Effect of

node size on the performance of cache-

conscious B+

-trees. In SIGMETRICS, 2003

[12]. Jiangkun Hu1 · Youmin Chen1 · Youyou

Lu1 · Xubin He2 · Jiwu Shu1:

Understanding and analysis of B+ trees on

NVM towards consistency and efciency

[13]. Using the Structure of B+-Trees for

Enhancing Logging Mechanisms of

Databases: Peter Kieseberg Sebastian

Schrittwieser Lorcan Morgan Martin

Mulazzani Markus Huber Edgar Weippl

SBA Research Vienna,Austria

https://medium.com/%40info.gildacade
http://www.javatpoint.com/b-plus-

